Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Real Driving Emission Efficiency Potential of SDPF Systems without an Ammonia Slip Catalyst

2017-03-28
2017-01-0913
In order to comply with emission regulation, reach their profitability targets and minimise the in-use cost of their vehicles, OEMs are seeking solutions to optimise their aftertreatment systems. For Selective Catalytic Reduction (SCR) system engineers, one of the most important challenges is to reduce the system's cost, while keeping its high level of NOx emission reduction performance. Ways to achieve this cost reduction include 1. using an engine out NOx estimation model instead of a NOx sensor upstream of the SDPF (DPF coated with SCR) catalyst and 2. eliminating the Ammonia Slip Catalyst (ASC) downstream of the SDPF catalyst. Achieving these challenging targets requires actions on the complete SCR system, from the optimisation of mixing and uniformity in the SDPF catalyst to the development of robust controls. To face these challenges, a novel exhaust reverse flow concept with a blade mixer was developed.
Technical Paper

Development of a New MOS Rectifier for High-Efficiency Alternators

2017-03-28
2017-01-1240
For the purpose of improving vehicle fuel efficiency, it is necessary to reduce energy loss in the alternator. We have lowered the resistance of the rectifying device and connecting components, and control the rectifying device with an IC to reduce rectification loss. For the package design, we have changed the structure of the part on which the rectifying device is mounted into a high heat dissipation type. The new structure has enabled optimizing the size of the rectifying device, resulting in the reduction of size of the package. In addition, the rectifying device is mounted using a new soldering material and a new process, which has improved the reliability of the connection. Moreover, since the alternator has introduced a new system, the controller IC has a function for preventing malfunction of the rectifying device and a function for detecting abnormalities, in order to ensure safety.
Technical Paper

Virtual Development for In-Vehicle Network Topology – A Case Study of CAN FD Physical Layer

2017-03-28
2017-01-0023
In-vehicle network communication is evolving faster speeds and higher performance capabilities, connecting the information possessed by ECU and sensors with the in-vehicle electronic systems which are continuing to develop. With the evolution of the complicated networks, it is becoming difficult to develop them without many verification of actual machine. On the other hand, as for the verification means required at the logic level or physical level for a network verification through ECU design, virtual verification in the whole vehicle is difficult due to speed increases and the sheer size of the system. Therefore, it is only applicable for systems which are limited to a domain or an area, and flexible and timely utilization would be difficult due to the changes in specifications.
Technical Paper

Criteria-Driven Approach in Automotive Software Development – Integrating Concepts of Formal Methods with Testing

2017-03-28
2017-01-0003
We propose a verification method in the field of automotive control systems integrating the concepts of Formal Methods with testing, aiming at efficient and reliable software development. Although Formal Methods are believed to provide the benefits of their rigorous nature and their inherent capability of automation, only limited cases are known where Formal Methods were applied in system and software development, in practice, due to two major difficulties: appropriate abstraction in modeling and scalability in automated reasoning. Focusing on testing on the other hand, there is the difficulty of selecting reasonable set of tests for given verification objectives. In order to overcome these difficulties, our approach is to present verification criteria for testing to appropriately cover the property with the help of the Formal Method concepts.
Technical Paper

Technique of ECU Circuit Design Management for Automotive Ethernet

2017-03-28
2017-01-0021
In recent years, the demand for high-speed/high-bandwidth communication for in-vehicle networks has been increasing. This is because the usage of high-resolution screens and high-performance rear seat entertainment (RSE) systems is expanding. Additionally, it is also due to the higher number of advanced driver assistance systems (ADAS) and the future introduction of autonomous driving systems. High-volume data such as high definition sensor images or obstacle information is necessary to realize these systems. Consequently, automotive Ethernet, which meets the requirements for high-speed/high-bandwidth communication, is attracting a lot of attention. The application of automotive Ethernet to in-vehicle networks requires that technology developments satisfy EMC performance requirements. In-vehicle EMC requirements consist of two parts: emission and immunity. The emission requirement is to restrict the electromagnetic noise emitted from vehicle.
Technical Paper

Analysis of Dynamic Characteristics of Full-Pitch-Winding Switched Reluctance Motor Based on Reluctance Network Analysis

2017-03-28
2017-01-1250
An electromagnetic and motion-coupled analysis is made for a Switched Reluctance Motor (SRM) based on a Reluctance Network Analysis (RNA). A full-pitch-winding SRM is promising since it has a high torque density. Since the motor characteristics such as driving torque significantly depend on commutation pattern, an analysis coupled with motor motion and its drive circuit is requisite for the performance prediction. However, in the full-pitch-winding SRM, the relationship between the coil magnetomotive force and the core flux is complicated, and thus Finite Element Method (FEM) has been major method to predict the motor characteristics, which takes too much computational time for cycle calculations. An RNA treats the relationship of coil magnetomotive force and core flux as lumped parameter circuit, and thus enables fast computation with a macroscopic view of magnetic phenomena.
Journal Article

Ejector Energy-Saving Technology for Mobile Air Conditioning Systems

2017-03-28
2017-01-0120
This study reports on a new generation ECS (Ejector Cycle System) which includes a highly efficient ejector and a novel system configuration. The ejector is working as a fluid jet pump that recovers expansion energy which is wasted in the conventional refrigeration cycle decompression process, and converts the recovered expansion energy into pressure energy and raises the compressor suction pressure. Consequently, the ejector system can reduce power consumption of the compressor by using the above mentioned pressure-rising effect and improve energy efficiency of the refrigeration cycle. The ejector consists of a nozzle, a suction section, a mixing section and a diffuser. The objective of this study is to improve actual fuel economy of all vehicles by ejector technology. The previous generation ECS was reported in 2012 SAE World Congress1. Now, a new generation ECS has been successfully developed and released in the market for Mobile Air Conditioning systems as of 2013.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Journal Article

Analysis of Driver Kinematics and Lower Thoracic Spine Injury in World Endurance Championship Race Cars during Frontal Impacts

2017-03-28
2017-01-1432
This study used finite element (FE) simulations to analyze the injury mechanisms of driver spine fracture during frontal crashes in the World Endurance Championship (WEC) series and possible countermeasures are suggested to help reduce spine fracture risk. This FE model incorporated the Total Human Model for Safety (THUMS) scaled to a driver, a model of the detailed racecar cockpit and a model of the seat/restraint systems. A frontal impact deceleration pulse was applied to the cockpit model. In the simulation, the driver chest moved forward under the shoulder belt and the pelvis was restrained by the crotch belt and the leg hump. The simulation predicted spine fracture at T11 and T12. It was found that a combination of axial compression force and bending moment at the spine caused the fractures. The axial compression force and bending moment were generated by the shoulder belt down force as the driver’s chest moved forward.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Technical Paper

4th Generation Diesel Piezo Injector (Realizing Enhanced High Response Injector)

2016-04-05
2016-01-0846
Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Water Cooled Charge Air Cooler Development

2016-04-05
2016-01-0651
Due to the recent trend emphasizing on environmental friendly, engine supercharger downsizing technology has been under development globally. In this report, the technical knowledge for high performance and high quality water-cooled CAC development is provided. For higher cooling performance, the optimum fin and tube core matrix water-cooled CAC, delivering best performance and quality have been developed. For higher reliability against thermal stress, the detail specifications of water-cooled CAC based on the transient analysis and the simulation technology have been established.
Technical Paper

Compact High-Efficiency 2-Layer Blower Fan for HVAC

2016-04-05
2016-01-0193
In recent years, the spread of eco-car has led to the demand for adaptation to low heat source, high efficiency and low noise in vehicle air conditioner. On the other hand, larger interior space of vehicle to assure passenger comfort is demanded, so that the car air-conditioner is required to be smaller. Therefore, we adopted 2-layer HVAC for the air conditioner which can respond to a low heat source. At the same time we have developed the compact high-efficiency 2-layer blower fan for HVAC in order to enable the 2-layer HVAC to be mounted on eco-car with smaller space than conventional HVAC. Generally, because axial flow velocity increases resulting from downsizing of the blower, the ununiform velocity distribution in the axial direction and the turbulent flow between fan blades occurs. It causes the efficiency decrease. To satisfy both downsizing and high-efficiency of the 2-layer blower, we have developed new technologies which can make the flow uniform between fan blades.
Journal Article

Development of Power Control Unit for Compact-Class Vehicle

2016-04-05
2016-01-1227
Toyota Motor Corporation has developed the new compact-class hybrid vehicle (HV). This vehicle incorporates a new hybrid system for the improvement of fuel efficiency. For this system, a new Power Control Unit (PCU) is developed. The feature of the PCU is downsizing, lightweight, and high efficiency. In expectation of rapid popularization of HV, the aptitude for mass production is also improved. The PCU, which plays an important role in the new system, is our main focus in this paper. Its development is described.
Journal Article

Multiplex Communication Protocol for Switch/Sensor/Actuator Network: “CXPI”

2016-04-05
2016-01-0057
The growing functionality and complexity of recent vehicle electronic systems have made inter-device communication (on-board LAN) technology vital to vehicle design. By field of application, the LAN (Local Area Network) systems currently in use are LIN (Local Interconnect Network) used for body systems, CAN (Controller Area Network) used for control systems, and MOST (Media Oriented Systems Transport ) used for multimedia and camera systems, and work to standardize the next-generation communication technology for each of those fields is underway. This paper provides a technical overview of the CXPI (Clock Extension Peripheral Interface) communication protocol, which satisfies the body system requirements (rapid response, system extensibility, high reliability, and low cost). It also presents the progress made on standardization at SAE and other organizations.
Journal Article

An Application of Shape Optimization to Brake Squeal Phenomena

2015-09-27
2015-01-2658
The present paper describes an application of non-parametric shape optimization to disc brake squeal phenomena. A main problem is defined as complex eigenvalue problem in which the real part of the complex eigenvalue causing the brake squeal is chosen as an objective cost function. The Fre´chet derivative of the objective cost function with respect to the domain variation, named as the shape derivative of the objective cost function, is evaluated using the solution of the main problem and the adjoint problem. A selection criterion of the adoptive mode number in component mode synthesis (CMS), which is used in the main problem, is presented in order to reduce the computational error in complex eigenvalue pairs. A scheme to solve the shape optimization problem is presented using an iterative algorithm based on the H1 gradient method for reshaping. For an application of the optimization method, a numerical example of a practical disc brake model is presented.
Technical Paper

Engine Oil Formulation Technology to Prevent Pre-ignition in Turbocharged Direct Injection Spark Ignition Engines

2015-09-01
2015-01-2027
Engine oil formulation is known to affect low speed pre-ignition (LSPI), which creates technical restrictions on downsized turbocharged engines. Calcium, which is used to ensure detergency and anti-rust performance, is reported to increase LSPI events. Therefore, new formulation technologies are needed to satisfy both LSPI prevention performance and other conventional performance areas. The authors focused on two approaches: enhancement of LSPI prevention performance by adding a booster component and substitution of calcium for a less reactive component to balance performance areas including LSPI prevention. We have verified the effectiveness of these approaches by increasing the dosage of molybdenum used as a friction modifier as well as replacing calcium detergent with a magnesium detergent. These formulation strategies can be applicable for future ILSAC GF-6 engine oil, where a specification for LSPI prevention performance is expected to be implemented.
Technical Paper

Mechanism of Turbocharger Coking in Gasoline Engines

2015-09-01
2015-01-2029
Turbocharged downsized gasoline engines have been widely used in the market as one of the measures to improve fuel economy. Coking phenomena in the lubricating circuit of the turbocharger unit is a well-known issue that may affect turbocharger efficiency and durability. Laboratory rig test such as ASTM D6335 (TEOST 33C) has been used to predict this phenomenon as a part of engine oil performance requirements. On the other hand, laboratory tests sometimes have difficulty reproducing the actual mechanism of coking caused by engine oil degradation. Accumulation of insoluble material is one of the important gasoline engine oil degradation modes. The influence of temperature and insoluble concentration were investigated based on actual used engine oils collected in the field.
Technical Paper

Power Plant Model of Fuel Consumption and Vibration for Vehicle Concept Planning

2015-06-15
2015-01-2253
It is important for vehicle concept planning to estimate fuel economy and the influence of vehicle vibration in advance. This can be accomplished using virtual engine specifications and a virtual vehicle frame. In this paper, I will show the power plant model with electric starter and battery that can predict fuel economy, combustion heat results and transient torque. The power plant is a 1.3L 4cyl designed for NA Spark Ignition. The power plant model was realized using an energy based model using VHDL-AMS. Here, VHDL-AMS is modeling language stored in IEC international standard (IEC61691-6) and can realize multi physics in 1D simulation. The modeling language supports electrical, magnetic, thermal, mechanical, fluidic and compressive fluidic domains. The model was created in house using VHDL-AMS and validated on ANSYS SIMPLORER. The simulated results of fuel energy consumption agreed with driving energy and amount of energy losses, e.g. cooling loss, exhaust loss.
X